Metal–insulator–semiconductor electrostatics of carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Metal–insulator–semiconductor electrostatics of carbon nanotubes
Carbon nanotube metal–insulator–semiconductor capacitors are examined theoretically. For the densely packed array of nanotubes on a planar insulator, the capacitance per tube is reduced due to the screening of the charge on the gate plane by the neighboring nanotubes. In contrast to the silicon metal–oxide–semiconductor capacitors, the calculated C – V curves reflect the local peaks of the one-...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اول2 00 5 Effect of scattering and contacts on current and electrostatics in carbon nanotubes
We computationally study the electrostatic potential profile and current carrying capacity of carbon nanotubes as a function of length and diameter. Our study is based on solving the non equilibrium Green’s function and Poisson equations self-consistently, including the effect of electronphonon scattering. A transition from ballistic to diffusive regime of electron transport with increase of ap...
متن کاملEffect of scattering and contacts on current and electrostatics in carbon nanotubes
We computationally study the electrostatic potential profile and current carrying capacity of carbon nanotubes as a function of length and diameter. Our study is based on solving the nonequilibrium Green’s function and Poisson equations self-consistently, including the effect of electron-phonon scattering. A transition from the ballistic to diffusive regime of electron transport with an increas...
متن کاملElectrostatics of Nanowires and Nanotubes: Application for Field–effect Devices
We present a quantum and classical theory of electronic devices with one–dimensional (1D) channels made of a single carbon nanotube or a semiconductor nanowire. An essential component of the device theory is a self–consistent model for electrostatics of 1D systems. It is demonstrated that specific screening properties of 1D wires result in a charge distribution in the channel different from tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2002
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.1502188